First Recorded Observations of Pollination and Oviposition Behavior in Tegeticula antithetica (Lepidoptera: Prodoxidae) Suggest a Functional Basis for Coevolution With Joshua Tree (Yucca) Hosts
نویسندگان
چکیده
Yucca moths (Tegeticula spp.) are the exclusive pollinators of Joshua trees (Yucca brevifolia s. l.). The moths actively pollinate the Joshua tree flowers and lay their eggs in the style. Recent studies have revealed that the plants commonly known as Joshua trees include two distinct, sister-species of plant: Yucca brevifolia Engelm. and Yucca jaegeriana McKelvey, each pollinated by two sister-species of yucca moth Tegeticula synthetica Riley and Tegeticula antithetica Pellmyr, respectively. A number of studies have argued that the moths have coevolved with their hosts, producing a pattern of phenotype matching between moth ovipositor length and floral style length. However, the only known descriptions of yucca moth pollination and oviposition behavior on Joshua trees are observations of T. synthetica made in 1893. The behavior of T. antithetica has never been observed before. We produced the first video recordings of the behavior of T. antithetica, and measured the points of oviposition and egg placement within the floral style. We found a number of differences between the behaviors of T. antithetica and T. synthetica, which appear to be a consequence of differences in floral morphology between Y. jaegeriana and Y. brevifolia. We also found that variation in floral style length strongly influences the placement of eggs within the flower, which may explain patterns of phenotype matching described previously. However, unlike in other yucca moths, we find that the mode of oviposition is unlikely to wound the floral ovules, and thus that oviposition by T. antithetica is unlikely to prompt floral abscission.
منابع مشابه
Host specificity and reproductive success of yucca moths (Tegeticula spp. Lepidoptera: Prodoxidae) mirror patterns of gene flow between host plant varieties of the Joshua tree (Yucca brevifolia: Agavaceae).
Coevolution between flowering plants and their pollinators is thought to have generated much of the diversity of life on Earth, but the population processes that may have produced these macroevolutionary patterns remain unclear. Mathematical models of coevolution in obligate pollination mutualisms suggest that phenotype matching between plants and their pollinators can generate reproductive iso...
متن کاملSpecies identification and sibship assignment of sympatric larvae in the yucca moths Tegeticula synthetica and Tegeticula antithetica (Lepidoptera: Prodoxidae).
Ecological interactions between yucca moths (Tegeticula, Prodoxidae) and their host plants (Yucca, Agavaceae) are exemplary of obligate plant-pollinator mutualism and co-evolution. We describe a multiplex microsatellite DNA protocol for species identification and sibship assignment of sympatric larvae from Tegeticula synthetica and Tegeticula antithetica, pollinators of the Joshua tree (Yucca b...
متن کاملCoevolution and divergence in the Joshua tree/yucca moth mutualism.
Theory suggests that coevolution drives diversification in obligate pollination mutualism, but it has been difficult to disentangle the effects of coevolution from other factors. We test the hypothesis that differential selection by two sister species of pollinating yucca moths (Tegeticula spp.) drove divergence between two varieties of the Joshua tree (Yucca brevifolia) by comparing measures o...
متن کاملAbsence of population-level phenotype matching in an obligate pollination mutualism.
Coevolution is thought to promote evolutionary change between demes that ultimately results in speciation. If this is the case, then we should expect to see similar patterns of trait matching and phenotypic divergence between populations and between species in model systems for coevolution. As measures of divergence are frequently only available at one scale (population level or taxon level), t...
متن کاملCoevolution driving speciation? Evidence from a Joshua tree hybrid zone
The idea that biotic interactions foster diversification is supported by substantial circumstantial evidence, but is challenging to test. We use a uniquely suitable system to ask whether putative coevolution in a plant-pollinator interaction is contributing to speciation. Two subspecies of Joshua tree (Yucca brevifolia brevifolia and Y. b. jaegeriana) have reciprocally obligate relationships wi...
متن کامل